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Abstract. In the United States, probability-based water quality surveys are typically used to meet

the requirements of Section 305(b) of the Clean Water Act. The survey design allows an inference

to be generated concerning regional stream condition, but it cannot be used to identify water quality

impaired stream segments. Therefore, a rapid and cost-efficient method is needed to locate poten-

tially impaired stream segments throughout large areas. We fit a set of geostatistical models to 312

samples of dissolved organic carbon (DOC) collected in 1996 for the Maryland Biological Stream

Survey using coarse-scale watershed characteristics. The models were developed using two distance

measures, straight-line distance (SLD) and weighted asymmetric hydrologic distance (WAHD). We

used the Corrected Spatial Akaike Information Criterion and the mean square prediction error to

compare models. The SLD models predicted more variability in DOC than models based on WAHD

for every autocovariance model except the spherical model. The SLD model based on the Mariah

autocovariance model showed the best fit (r2 = 0.72). DOC demonstrated a positive relationship with

the watershed attributes percent water, percent wetlands, and mean minimum temperature, but was

negatively correlated to percent felsic rock type. We used universal kriging to generate predictions

and prediction variances for 3083 stream segments throughout Maryland. The model predicted that

90.2% of stream kilometers had DOC values less than 5 mg/l, 6.7% were between 5 and 8 mg/l, and

3.1% of streams produced values greater than 8 mg/l. The geostatistical model generated more accu-

rate DOC predictions than previous models, but did not fit the data equally well throughout the state.

Consequently, it may be necessary to develop more than one geostatistical model to predict stream

DOC throughout Maryland. Our methodology is an improvement over previous methods because

additional field sampling is not necessary, inferences about regional stream condition can be made,

and it can be used to locate potentially impaired stream segments. Further, the model results can be

displayed visually, which allows results to be presented to a wide variety of audiences easily.

Keywords: dissolved organic carbon, geostatistics, hydrologic distance, streams, water quality

monitoring

1. Introduction

The Clean Water Act (CWA) of 1972 requires states and tribes located in the United
States to identify water quality impaired stream segments, to create a priority rank-
ing of those segments, and to calculate the Total Maximum Daily Load (TMDL) for
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each impaired segment based upon chemical and physical water quality standards.
States and tribes are also required to prepare a biennial water quality inventory
that characterizes regional water quality based on the attainment of designated-use
standards assigned to individual stream segments. Yet, it is impossible to physically
survey every stream within a large area due to the immense number of segments,
limited personnel, and the cost associated with sampling (Olsen and Ivanovich,
1993; Herlihy et al., 2000; USEPA, 2001). In addition, lawsuits have been filed in
38 states by environmental groups demanding that the requirements of the CWA
be met in a timely fashion (Copeland, 2002). These increased pressures have led
to the need to develop a rapid and cost-efficient survey method that has the abil-
ity to statistically identify potentially impaired stream segments in large areas. To
address this issue, we developed a geostatistical model based on coarse-scale geo-
graphical information system (GIS) data and used it to make predictions for every
stream segment in our study area. We predicted dissolved organic carbon (DOC)
because it can be used as a water quality indicator (Maryland Department of Natural
Resources, 1999), but these methods could also be applied to other water quality
constituents. Although our results may be useful in Maryland, our primary interest
lies in investigating and demonstrating a methodology which could be used by any
state or tribe to predict any quantitative water quality parameter.

Dissolved organic carbon (DOC) is an important constituent of water quality
because it affects the chemical and biological condition of freshwater ecosystems.
DOC is a significant energy source in aquatic food webs (Wetzel, 1992), absorbs
biologically harmful ultraviolet rays that penetrate the water column (Williamson
et al., 1996; Kiffney et al., 1997), acts as a weak acid (Sullivan et al., 1989), and binds
dissolved substances, such as metals, making them temporarily less bioavailable
(Driscoll et al., 1995; Prusha and Clements, 2004).

The concentration of DOC in headwater streams is strongly influenced by the
production and transport of organic matter from the terrestrial environment. The
main sources are soil, groundwater, and dead terrestrial plant material (Wetzel,
1992). DOC is transported from the watershed via overland, sub-surface, or base
flow and the flow path of water affects the stream concentration. Shallow sub-surface
paths and overland flow through wetlands, organic soil layers, and shallow soils
tend to produce water with relatively high concentrations of DOC (Mulholland,
2003). Conversely, sub-surface or base flow moving through deeper soil horizons
may lose DOC, which is adsorped by the mineral soils (Qualls and Haines, 1992).

Models based on both local and coarse-scale input data have been created to
explain variability in lake or stream DOC (Rasmussen et al., 1989; Houle et al.,
1995; Currie and Aber, 1997; Neff and Asner, 2001; Ouyang, 2003). For our pur-
poses, local-scale data refers to fine-scale measurements, such as depth of litter
mass, which must be collected in the field. Coarse-scale or landscape-scale data
represent lumped watershed attributes, such as percent wetlands or mean elevation
in the watershed, which are typically calculated using GIS or remotely sensed data.
Models that include locally-derived input data are not suitable for regional DOC
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estimation because they require extensive and expensive field sampling (Herlihy
et al., 2000; USEPA, 2001). Models based solely on remotely derived coarse-scale
data have also been generated to explain variability in DOC concentration. There
appears to be a significant tradeoff between the cost, in both time and money, of
input data and the accuracy of the model predictions. For example, Creed and oth-
ers (2003) delineated wetlands using LIDAR (light detection and ranging) data and
were able to explain 91% of the variability in stream and lake DOC in 12 wa-
tersheds. Their results are promising, but their input data is expensive (Haneberg,
2005) and therefore unsuitable for regional monitoring at this time.

Other models have been generated using coarse-scale remotely sensed data, such
as United States Geological Survey (USGS) Land Use Land Cover data (USGS,
2005) or USGS digital elevation models (DEM) (USGS, 2003), which are easily
accessible and available at no cost. Yet, these models explained less variability in
DOC (Eckhardt and Moore, 1990; Herlihy et al., 1998; Gergel et al., 1999; Prusha
and Clements, 2004). For example, Kortelainen (1993) used latitude, catchment
area/lake area ratio, and percent of watershed area covered by peatlands, fields, and
upstream lakes to explain 55% of the variability in DOC collected in 978 lakes
throughout Finland. Canham and others (2004) built a process-based model based
on landscape data to better understand the production, transport, and loss of DOC
in 428 Adirondack lakes and were also able to explain 55% of the variability in
DOC. Although these models are useful, there is a need for more accurate regional
models based on accessible and inexpensive input data.

We recently completed research that indicates that geostatistical models based
on coarse-scale data have the ability to produce more accurate stream chemistry
predictions (Peterson et al., in press). Geostatistical models are similar to traditional
statistical models, in that they represent the broad-scale trend in the mean of the
data, but relax the assumption of independence and allow spatial autocorrelation
in the residuals. Local deviations from the mean are modeled using the covariance
between neighboring sites. Heterogeneity in the broad-scale mean and variance are
permitted, but the mean, variance, and autocorrelation structure of the error term
are assumed to be stationary or similar across a study area (Bailey and Gatrell,
1995).

The covariance characterizes the strength of spatial autocorrelation between
pairs of sites within a spatial neighborhood given their separation distance (Olea,
1991). A spatial neighborhood includes sites that are nearby and have a quantifi-
able influence upon one another. Sites outside of the spatial neighborhood are not
considered to be spatially correlated. The separation distance is simply the distance
traveled from one location to a second location.

The separation distance can be calculated using a variety of distance measures
(Peterson et al., in press), but we only concern ourselves with straight-line distance
(SLD) (aka Euclidean distance) and asymmetric hydrologic distance weighted by
discharge volume. SLD (Figure 1a) is directionless (isotropic) and has equal cor-
relation in all directions. In addition, all locations in a study area are considered



618 E. E. PETERSON AND N. S. URQUHART

Figure 1. Straight-line distance and asymmetric hydrologic distance. The stream network is repre-

sented by a solid line while distance measurements are represented with dotted lines. Sites 1, 2, and

3 are all neighbors to one another when straight-line distance (a) is used. Sites 1 and 2 are neighbors

to site 3, but not to each other when asymmetric hydrologic distance (b) is used because sites must

be connected by flow to be neighbors.

potential neighbors. Hydrologic distance is the distance between two locations
when movement is restricted to the stream network. Asymmetric hydrologic dis-
tance is unidirectional because movement between sites is restricted to either the
upstream or downstream direction (Figure 1b). Therefore, water must flow from
one location to another for two sites to be considered potential neighbors. Spatial
weights are generated using metrics that represent relative network position, such
as watershed area, and used to represent discharge volume (Ver Hoef et al., 2007;
Peterson, 2005).

Geostatistical models have not typically been used to model water chemistry in
stream networks (but see Gardner et al., 2003; Kellum, 2003; Yuan, 2004; Peterson
et al., in press), but they have been shown to improve the accuracy of water chem-
istry predictions (Yuan, 2004; Peterson et al., in press). It is common for researchers
to obtain an estimate of the model fit by removing observed sites from the dataset
and making predictions at those sites (Gardner et al., 2003; Yuan, 2004, Peter-
son et al., in press). To our knowledge, no one has used a fitted geostatistical
model to make water chemistry predictions for every unobserved stream segment
in their study area. We created a set of geostatistical models using coarse-scale
GIS data and two distance measures, SLD and weighted asymmetric hydrologic
distance (WAHD). We compared the models to determine which had the most
predictive ability and then used a single model to generate predictions and predic-
tion variances for 3083 stream segments located in seven interbasins throughout
Maryland.
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Figure 2. The Maryland Biological Stream Survey sites and their dissolved organic carbon (DOC)

values in mg/l collected by the Maryland Department of Natural Resources in 1996.

2. Methods

2.1. STUDY AREA AND DESIGN

The Maryland Biological Stream Survey (MBSS) data (Figure 2) were collected
throughout Maryland by the Department of Natural Resources (DNR) (Mercurio
et al., 1999). Maryland is a geographically diverse state that can be divided into
five physiographic provinces: the Appalachian Plateau, the Blue Ridge, the Coastal
Plain, the Piedmont, and the Valley and Ridge (Boward et al., 1999). Elevation
increases from the eastern Coastal Plain to the Appalachian Plateau in the west.

The Maryland DNR used a probability-based survey to collect chemical, phys-
ical, and biological data from first, second, and third order non-tidal streams in
17 interbasins throughout the state (Mercurio et al., 1999). A stratified random
sample was selected in each interbasin based on Strahler stream order (Strahler,
1957) and the number of samples collected per stream order was proportional to
the number of stream order miles within the interbasin. Sampling was conducted
during 1995, 1996, and 1997, but we restricted our analyses to data collected in
1996 to reduce differences in DOC resulting from interannual variation. Seven in-
terbasins were visited and 343 DOC samples were collected at individual locations
between March 1 and May 1, 1996. The samples represent the carbon that remained
after filtration with a 0.45 μm filter (USEPA, 1987). They were analyzed using a
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Doorman DC-80 carbon analyzer, which had a minimum detection limit of 1.0 mg
per liter (Mercurio et al., 1999).

2.2. GIS PRE-PROCESSING

The stream network and survey site coordinates were pre-processed in a GIS to
ensure that sites were positioned on the correct stream segment. There are a variety
of reasons why it is rare for GIS data collected within a stream to fall directly
on a line segment representing a stream. Though points collected using global
positioning systems are differentially corrected, they still have some error. Some
stretches of river can move (e.g. meander) slightly from their mapped position.
Streams are often represented by lines and so samples collected on the banks of
a large river may not fall directly on a line segment. Digital streams datasets may
contain mapping errors and generalizations, such as the absence of small tributaries
and the homogenization of form, which are found when streams are represented at
coarser scales. As a result of these data problems, we discarded 23 sites because
the survey stream could not be identified.

Distance matrices were generated for SLD and asymmetric hydrologic distance
measures (Figures 1a and 1b). We projected the data from latitude/longitude to Al-
bers Equal Area projection (North American Datum 1983 based on the GRS1980
spheroid) before calculating the distance measurements. Projecting the data was
necessary because distance between points calculated directly from latitude/
longitude coordinates have a known, systematic bias associated with increasing
latitude. The SLD matrix was calculated in R statistical software package (Ihaka
and Gentleman, 1996) using northing and easting values as x, y coordinates.

The spatial weights are used to develop the WAHD measure and represent the
relative influence of one site on another. If two sites are not connected by flow the
spatial weight is equal to zero and a site’s influence on itself is equal to 1. The spatial
weights for flow-connected sites are based on watershed area, which we use as a
surrogate for discharge volume. They are generated by calculating the upstream
watershed area for the downstream node of each segment in the stream network
using a GIS. We define a stream segment as the portion of a stream located between
two confluences. When survey sites fall midway along a segment it is split into
two separate stream segments. At each confluence or survey site in the network,
the total upstream watershed area is calculated by summing the watershed area for
the incoming stream segments. The proportional influence (PI) for each incoming
segment is calculated by dividing its watershed area by the total upstream watershed
area at the confluence or survey site (Figure 3). When this process is complete,
every stream segment in the network contains an attribute that represents its PI on
the segment directly downstream. The next step is to calculate the PI of one site on
another. First, we locate the path between flow-connected sites. The PI of one site
on another is equal to the product of the segment proportional influences found in
the path between sites. The spatial weights matrix is simply an n by n matrix that
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Figure 3. The segment proportional influence (PI) represents a segment’s PI on the segment directly

downstream. It is calculated by dividing the segment’s total watershed area by the total incoming

watershed area at the confluence or survey site.

contains the square root of the PI for all pairs of sites. Using the square root of the
PI ensures that stationarity in the variances is maintained (Ver Hoef et al., 2007).

The asymmetric hydrologic distance and spatial weights matrices were calcu-
lated in a GIS using programs written in Visual Basic for Applications for ArcGIS
version 8.3 (ESRI, 2002). The GIS methods used to generate these matrices are
lengthy and are not the focal point of this manuscript (but see Peterson, 2005).

2.3. STATISTICAL ANALYSIS

2.3.1. Initial Covariate Selection
The MBSS dataset contains coarse-scale watershed data for each survey site (Mer-
curio et al., 1999), which the Maryland DNR derived using a GIS and the 1992
National Land Cover Data (NLCD) (MRLC Consortium, 2003) (Table I). We also
derived two site level attributes: Level III Omernik’s ecoregion (Omernik, 1987)
and geographic location, as well as, watershed level attributes: mean tempera-
ture, mean elevation, mean slope, mean precipitation, percent geology type, mean
soil pH, and mean soil erodability factor (Table I). The variance inflation factor
(VIF) collinearity statistic (Helsel and Hirsch, 1992) indicated that some poten-
tial covariates were significantly correlated with other covariates (VIF >10) and
we removed them from further analysis. These included percent agriculture, per-
cent forest, percent wetlands, percent high intensity urban, percent low intensity
urban, percent pasture/hay/grass, percent probable row crops, percent row crops,
percent transitional area, mean soil pH, mean annual minimum temperature, mean



622 E. E. PETERSON AND N. S. URQUHART

TABLE I

Potential watershed covariates. Potential covariates include lumped watershed attributes provided in

the Maryland Biological Stream Survey (MBSS) dataset, as well as, lumped watershed attributes and

site level attributes that we calculated in a GIS. Potential covariates that demonstrated collinearity

with other covariates are not included in this table

Spatial

Covariate Description resolution Source

AREA Catchment area (ha) 30 m USGS, 2003

URBAN % Urban 30 m MBSS

BARREN % Barren 30 m MBSS

WATER∗ % Open water 30 m MBSS

CONIFER % Conifer or evergreen forest type 30 m MBSS

DECIDFOR % Deciduous forest type 30 m MBSS

MIXEDFOR % Mixed forest type 30 m MBSS

EMERGWET∗ % Emergent herbacious wetlands 30 m MBSS

WOODYWET∗ % Woody or shrubby wetlands 30 m MBSS

COALMINE % Coalmine 30 m MBSS

EASTING Easting–Albers Equal Area Conic 1 foot projected from MBSS

NORTHING Northing–Albers Equal Area Conic 1 foot projected from MBSS

ER63-ER69∗ Omernik’s Level III Ecoregion 1:250,000 USEPA, 2005

MEANELEV Mean elevation in the watershed 30 m USGS, 2003

SLOPE Mean slope in watershed 30 m USGS, 2003

ARGPERC % Argillaceous rock type in

watershed

1:250,000 A. Herlihy, pers. comm.

CARPERC % Carbonic rock type in watershed 1:250,000 A. Herlihy, pers. comm.

FELPERC∗ % Felsic rock type in watershed 1:250,000 A. Herlihy, pers. comm.

MAFPERC % Mafic rock type in watershed 1:250,000 A. Herlihy, pers. comm.

SILPERC % Siliceous rock type in watershed 1:250,000 A. Herlihy, pers. comm.

MEANK Mean soil erodability factor in

watershed

1 km ESSC, 1998

MAXTEMP Mean annual maximum

temperature

4 km SCAS, 1996

MINTEMP∗ Mean minimum temperature for

January–April

4 km SCAS, 1996

PRECIP Mean precipitation for

January–April

4 km SCAS, 1996

ANPRECIP Mean annual precipitation 4 km SCAS, 1996

∗Potential watershed covariates used in the geostatistical model selection.

maximum temperature for the months of January to April, and mean soil perme-
ability, leaving those listed in Table I for further investigation.

We needed to further reduce the list of potential covariates (Table I) due to
the processing time required for model selection. We used a Leaps and Bounds
algorithm (Furnival and Wilson, 1974) to find the “best” set of covariates and used
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them to develop a linear model. Ten watershed attributes were selected as potential
covariates: WATER, WOODYWET, EMERGWET, FELPERC, MINTEMP, ER64,
ER65, ER66, ER67, and ER69 (Table I). The WATER, WOODYWET, EMERG-
WET, AND FELPERC covariates represent percent open water, forested or shrubby
wetland areas, perennial herbaceous wetland areas, and felsic rock type in the water-
shed, respectively. MINTEMP is the mean minimum temperature in the watershed
for the first four months of 1996. ER64, ER65, ER66, ER67, and ER69 represent
the Omernik’s Level III ecoregion (Omernik, 1987) where the site is located. We
checked the model residuals for signs of non-normality and transformed DOC us-
ing a log10 transformation. The studentized residuals were used to identify eight
extreme outliers at a significance level of less than 0.01. These sites were not spa-
tially clustered and there were no evident patterns related to DOC or watershed
attributes. Therefore, the survey sites were removed from further analysis.

2.3.2. Covariance Parameter Estimation
We restricted the model space to all possible linear models using the 10 “best” ex-
planatory variables determined by the initial covariate selection process described
above. We evaluated nine sets of 1024 models (210 = 1024), where each set was
based on a unique distance measure and autocovariance function combination.
Five sets of models used the SLD measure and one of five common autocovariance
models: the exponential, spherical, Mariah (Eq. 3) (Ver Hoef et al., 2007), hole
effect, and rational quadratic. The remaining four sets of WAHD models used mov-
ing average representations of common autocovariance functions: the exponential,
spherical, linear with sill, and Mariah (Ver Hoef et al., 2007).

We also assumed that the model residuals were normally distributed with mean
zero and variance-covariance matrix � = σ 2�, where σ 2 is the variance and
� = �(d; θ ) is the covariance matrix. Note that � is a function of the separation
distance between sites, d, given the covariance parameter vector, θ . Therefore, the
model for response variable Z is written in matrix notation as Z = Xβ + ε, where
ε ∼ N (0, σ 2�). Here X is the n × p design matrix of covariates, β is a vector of
coefficients of length p, and ε is a vector of n (correlated) errors.

The log-likelihood function of the parameters (θ, β, σ 2) given the observed data,
Z, is

�(θ, β, σ 2; Z ) = −n

2
log(2π ) − 1

2
log |σ 2�| − 1

2σ 2
(Z − Xβ)′�−1(Z − Xβ). (1)

Maximizing the log-likelihood (Eq. 1) with respect to β and σ 2 yields β̂ =
(X ′�−1 X )−1 X ′�−1 Z and σ̂ 2 = (Z − X β̂)′�−1(Z − X β̂)/n. Both maximum like-
lihood estimators (MLE) can be written as functions of θ alone. We used the profile
log-likelihood function, obtained by substituting the MLEs back into (Eq. 1):

�profile(θ ; β̂, σ̂ 2, Z ) = −n

2
log(2π ) − n

2
log(σ̂ 2) − 1

2
log |�| − n

2
. (2)
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Use of the profile log-likelihood reduces the dimensionality of the maximization
problem, which can substantially decrease the amount of computing time required
to find a numerical solution. This is especially important when there are a large
number of models to compare, as is the case here.

The covariance matrix, �, for SLD can be computed using any of the autocovari-
ance functions we mentioned previously, but here we use the Mariah autocovariance
function (Ver Hoef et al., 2007) as an example:

C(d; θ0, θ1, θ2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ0 + θ1 if d = 0,

θ1

[
ln (d/θ2 + 1)

d/θ2

]
if 0 < d < θ2,

0 if θ2 ≤ d or two sites are
not flow-connected,

(3)

where θ0 represents the nugget effect, θ1 is the partial sill, and θ2 is the range
parameter. The nugget is estimated by θ̂0σ̂

2 where θ0 is restricted between zero and
one. The value d represents the separation distance between any two sites relative
to the distance measure, e.g., SLD or WAHD.

The asymmetric hydrologic distance and PI matrices must be reformatted be-
fore they can be used to create a statistically valid covariance matrix (Ver Hoef
et al., 2007; Peterson, 2005). A matrix, W, is computed by taking the square
root of the PI matrix. A symmetric spatial weights matrix is created by taking A
= W + W′. Then, the asymmetric hydrologic distance matrix, d, is forced into
symmetry by computing the symmetric hydrologic distance between all flow-
connected sites. This may seem counter intuitive because the matrices are in-
tended to represent asymmetric flow relationships. Nevertheless, there is a sym-
metric correlation between flow-connected sites. Even though a downstream site
does not affect upstream sites, the conditions at the downstream site are, in part,
a result of those found upstream. A model based on asymmetric hydrologic dis-
tance is dramatically different from models based on SLD or symmetric hydro-
logic distance (where flow direction and volume are ignored) because the spatial
neighborhood for the WAHD only includes flow-connected sites. Flow connec-
tivity is preserved in the symmetric distance matrix, while the strength of the
spatial autocorrelation between flow-connected sites is represented by the spatial
weights. The covariance matrix for the WAHD measure is generated by taking the
Hadamard (element-wise) product of the symmetric distance and spatial weights
matrices (Ver Hoef et al., 2007). The product is a covariance matrix that meets
the statistical assumptions necessary for geostatistical modeling (Ver Hoef et al.,
in press).

The MLE for θ is found by maximizing the profile log-likelihood (Eq. 2) using
a quasi-Newton method (Byrd et al., 1995), which is in turn used to compute
the MLEs for the model parameters: β and σ 2. To promote numerical stability,
we standardized the response and explanatory variables to have mean zero and
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unit variance. We also scaled the distances to fall between zero and one, but the
estimates reported here have been converted back to the original units.

2.3.3. Model Selection and Model Performance
We used the spatial Akaike Information Corrected Criterion (AICC) statistic (Hoet-
ing et al., in press) to select the geostatistical model with the most support in the
data from each of the nine model sets. The spatial AICC is defined as

AICC = −2�profile(θ ; β, σ 2, Z ) + 2n
p + k + 1

n − p − k − 2
, (4)

where n is the number of observations, p − 1 is the number of covariates, and k is
the number of covariance parameters. It is possible to compare models with low
AICC values and to identify a family of similar models, which all have a significant
level of support in the data. However, we did not consider competing models here
because we were primarily interested in prediction.

The nine models with the smallest AICC (one from each autocovariance func-
tion and distance measure combination) were used to generate predictions using
the universal kriging algorithm (Cressie, 1993). We used a leave-one-out cross-
validation method to calculate the mean square prediction error (MSPE) for each
of the nine models (Eq. 5) The MSPE is defined as

MSPE =

n p∑
i=1

(Zi − Ẑ i )
2

n p
, (5)

where Zi is the observed value at site i, Ẑi is the predicted value at site i, and
n p is the total number of predictions. Models with small MSPE are desirable.
The models constructed using different distance measures have unique variance
structures and therefore cannot be compared using the spatial AICC. The MSPE
provided a way to compare models constructed using different distance measures
and to determine which measure, if any, was more able to account for the variability
in the response variable. We generated cross-validation intervals for the covariate
parameters, which contain 95% of the estimated 312 parameter values. In addition,
we calculated the squared Pearson’s correlation coefficient (r2) for the predictions
and observations.

2.3.4. Geostatistical Model Predictions
The seven interbasins surveyed in 1996 contained 3083 first, second, and third order
non-tidal stream segments. We created 3083 prediction locations by calculating the
location for the downstream node of each stream segment. We used the downstream
node to ensure that the entire segment was located within the same watershed. This
caused more than one prediction location to be positioned at stream confluences.
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However, the covariates for the prediction locations represented the watershed con-
ditions of the individual segment rather than the confluence, which would include
all of the segments that flow into that location.

We generated a distance matrix that contained the SLD between both observed
and unobserved sites. We used the Functional Linkage of Watersheds and Streams
(FLoWs) tools (Theobald et al., 2005) developed for ArcGIS version 9.0 (ESRI,
2002) to calculate the watershed covariates (WATER, EMERGWET, WOODY-
WET, FELPERC, and MINTEMP) for the 3083 prediction locations. We used the
fitted covariances based on the Mariah autocovariance model and the universal krig-
ing algorithm to generate predictions and their variances at the prediction locations
(Cressie, 1993). The prediction values and variances were assigned back to each
stream segment in a GIS to visualize the results.

3. Results

Table II contains a summary of the distribution for each variable. DOC values
ranged between 0.6 and 15.9 mg/l. There were 207 sites located in ER64, 16 in
ER65, 11 in ER66, 39 in ER67, and 19 in ER69. The remaining 20 sites were
located in ER63, which was not included in the model. The Maryland DNR set a
threshold level of 8.0 mg/l for DOC and determined that values greater than the
threshold were a possible indicator of environmental stress (Maryland Department
of Natural Resources, 1999). Only eight MBSS sites collected in 1996 and located
west of Chesapeake Bay had DOC values greater than 5 mg/l and only two were
greater than 8.0 mg/l (Figure 2). Larger DOC values were found to the north and
east of Chesapeake Bay (4.8 to 15.9 mg/l). However, two of these sites were rated
as naturally acidic blackwater streams and their large DOC concentrations would
not be considered an indicator of stress (Boward et al., 1999).

The predictive ability of the geostatistical models based on SLD and WAHD
differed. The SLD models explained more variability in DOC than models based
on WAHD for every autocovariance model except the spherical model (Table III).

TABLE II

Summary statistics for log10 dissolved organic carbon (DOC) and model covariates

1st 3rd

Variable Min Quartile Median Mean Quartile Max σ 2

log10 DOC (mg/l) −0.22 0.08 0.24 0.28 0.43 1.20 0.25

WATER (%) 0 0 0.16 0.25 0.28 4.64 0.44

EMERGWET (%) 0 0 0.13 0.26 0.35 4.85 0.44

WOODYWET (%) 0 0 0.27 1.24 1.15 22.01 3.28

FELPERC (%) 0 0 0.31 26.81 55.26 100 36.14

MINTEMP (◦C) −5.88 −3.06 −2.39 −2.49 −1.4 0.03 1.47
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TABLE III

Model results. Mean square prediction error (MSPE) and the squared Pearson’s correlation coefficient

(r2) for the “best” model within the straight-line distance (SLD) and weighted asymmetric hydrologic

distance (WAHD) model sets

Autocovariance model Distance measure MSPE r2

Exponential SLD 0.9394 0.7190

WAHD 1.2337 0.6368

Spherical SLD 1.3391 0.6029

WAHD 1.2187 0.6428

Mariah SLD 0.9311 0.7221

WAHD 1.2326 0.6346

Hole Effect SLD 1.0136 0.6983

Linear with Sill WAHD 1.2141 0.6388

Rational Quadratic SLD 0.9447 0.7177

However, with the exception of the SLD spherical model, the predictive ability of
models within distance measure was comparable.

The SLD geostatistical models based on the exponential, Mariah, and rational
quadratic autocovariance models had the lowest MSPE values, produced the most
accurate predictions, and were essentially equal in their predictive ability (Table III).
The rational quadratic model included six covariates: WATER, EMERGWET,
WOODYWET, FELPERC, MINTEMP, and ER67. The exponential and Mariah
models were similar, but excluded the ER67 covariate. Yet, the models produced
dissimilar ranges of spatial autocorrelation. The range parameter for the exponen-
tial, Mariah, and rational quadradic models was 20.08 km, 7.02 km, and 11.71 km,
respectively. Despite this difference, the correlation coefficients for the model
predictions indicated that the models produced nearly identical predicted values
(r2 ≥ 0.990). A comparison of the model composition, MSPE values, and r2 values
suggested that there were no distinct differences between the predictions produced
by the exponential, Mariah, and rational quadratic SLD models. We limited ad-
ditional model exploration to the SLD Mariah model because it had that lowest
MSPE value and the largest r2 value.

The SLD Mariah model included five covariates. DOC had a positive relation-
ship with WATER, EMERGWET, WOODYWET, and MINTEMP (Table IV). In
contrast, FELPERC was negatively correlated with DOC. The cross-validation in-
tervals for the regression coefficients were narrow (Table IV). The model described
72% of the variability in DOC. However, there was one DOC value (observed
value = 15.9 mg/l) that had an unusually large effect on the r2 value (Figure 4) and
the model only explained 66% of the variability in DOC when that observation was
removed.

The square prediction error (SPE) values for the individual model predictions
produced by the SLD Mariah model were between 0 and 18.706, but were generally
low. Eighty-nine percent of the values were less than 1.5 and 71% of the values
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TABLE IV

Cross-validation intervals for straight-line distance Mariah regression coefficients. Coefficients rep-

resent the change in log10 dissolved organic carbon (DOC) in mg/l per unit of X

Statistic Water (%) Emergwet (%) Woodywet (%) Felperc (%) Mintemp (◦C)

Minimum 0.0469 0.0306 0.0156 −0.0006 0.0616

Lower 5% 0.0485 0.0322 0.017 −0.0006 0.0643

Mean 0.0501 0.0344 0.0176 −0.0005 0.0655

Upper 5% 0.0522 0.0366 0.0179 −0.0005 0.0669

Maximum 0.0537 0.0425 0.0187 −0.0004 0.071

Standard Dev 0.0007 0.0009 0.0002 0.00005 0.0007

were less than 0.5. However, there appeared to be an east-west trend associated
with the spatial location of the SPE values (Figure 5). The low SPE values in the
western portion of Maryland indicated that the model fit the data well in this area.
In contrast, larger SPE values were found in the central and eastern portions of
Maryland. We examined the 35 SPE values greater than 1.5 and found that the
model produced conservative estimates. It underestimated large DOC values 29
times and overestimated lower DOC values only 6 times. These errors occurred at
sites where the covariate values were similar to neighboring sites, but the observed
value was considerably different from nearby values. We examined other watershed
characteristics that were not included in the model, such as %FOREST, %URBAN,
mean slope, and watershed area, to determine whether sites with large SPE values
had unique characteristics that differed from conditions at other sites collected in
1996. However, the covariate distributions taken from the sites with large SPE
values were similar to the overall statistical distribution of those covariates and to
the watershed covariates at nearby sites.

Figure 4. Observed versus predicted values of dissolved organic carbon (DOC) using the straight-line

distance Mariah model.
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Figure 5. Square prediction error (SPE) values for the straight-line distance Mariah model. SPE

values are low in western Maryland, but increase in central and eastern Maryland near Chesapeake

Bay.

The parameter estimates for the SLD Mariah model used to make the predictions
at unobserved segments are listed in Table V. The prediction segments represented
5973.03 km of streams in Maryland. The prediction values ranged from 0.76 to
40.44 mg/l and the prediction variances were between 0.05 and 2.6 (Table VI). In
Maryland, DOC values less than 5 mg/l are considered low and values greater than
8 mg/l are high (Maryland Department of Natural Resources, 1999). The model
predicted that 90.2% of streams had DOC values less than 5 mg/l, 6.7% were
between 5 and 8 mg/l, and 3.1% of streams produced values greater than 8 mg/l
(Figure 6). There were 18 prediction values that were greater than 15.9 mg/l and
these segments also possessed the largest prediction variances (1.1 to 2.6). Although
the prediction values exceeded the largest observed value in the 1996 data, they may
be somewhat reasonable since the largest DOC value found in the complete MBSS
dataset was 32.9 mg/l. Sixteen of the prediction values greater than 15.9 mg/l were

TABLE V

Unstandardized parameter estimates for the straight-line distance Mariah model that was used to make

predictions at unobserved stream segments. The regression coefficients represent the change in log10

dissolved organic carbon (mg/l) per unit of X. The nugget value is the proportion nugget effect

Nugget Sill Range Intercept Water Emergwet Woodywet Felperc Mintemp

0.15 0.28 7.02 0.28 0.05 0.04 0.02 −0.0005 0.07
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TABLE VI

Summary statistics for dissolved organic carbon predictions and prediction variances produced by the

straight-line distance Mariah model

1st 3rd

Variable Min Quartile Median Mean Quartile Max

Predictions (mg/l) 0.8 1.5 1.9 2.7 3.0 40.4

Prediction Variance (mg/l)2 0.049 0.095 0.122 0.171 0.193 2.597

located in watersheds with WATER, EMERGWET, or WOODYWET values that
were substantially larger than those represented in the observed data. The other two
segments with large prediction values resulted from artifacts in the streams data.
The two stream segments drain directly into large reservoirs and a portion of the
reservoir was erroneously included in the watershed, which caused the WATER
covariate to be artificially high.

4. Discussion

Our initial model selection procedure narrowed the field of covariates to five at-
tributes that represented watershed conditions and five that represented Omernik’s
ecoregions. However, the only ecoregion covariate included in the final geosta-
tistical models was ER67, which suggested that the variability in DOC that was
previously explained by Omernik’s ecoregion could also be explained using the
covariances between neighboring sites. The initial model selection method was
non-spatial and we questioned whether other watershed covariates would have been
selected if spatial autocorrelation was accounted for during the model selection pro-
cess. We attempted to address this question by replacing the ecoregion covariates
with three watershed covariates that were part of the MBSS dataset: percent urban,
percent conifer forest type, percent mixed forest type and two watershed covariates
that we calculated in a GIS: mean slope and mean annual precipitation (Table I). We
generated another set of geostatistical models using the same methodology and the
new set of covariates. Substituting watershed covariates for ecoregion covariates
did not improve the accuracy of the model predictions. Although watershed slope
and forest cover are correlated to DOC concentration in other studies (Eckhardt and
Moore, 1990; Canham et al., 2004; Prusha and Clements, 2004), they do not appear
to be strongly related to DOC concentration in Maryland at this scale of analysis.

Five model covariates were included in the geostatistical model based on SLD
and the Mariah autocovariance function: WATER, WOODYWET, EMERGWET,
FELPERC, and MINTEMP. Although these watershed covariates can be used to
explain variability in DOC, it is impossible to make inferences about cause and effect
relationships based on a statistical correlation. In addition, some of our covariates
displayed collinearity and the effects of collinear watershed covariates cannot be
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Figure 6. Map of the dissolved organic carbon (DOC) predictions and prediction variances for 3083

first, second, and third order non-tidal streams in seven interbasins throughout Maryland sampled

in 1996.
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separated using our methodology. Therefore, we will not speculate about cause and
effect relationships in the geostatistical model.

The SLD measure consistently produced geostatistical models that described a
greater amount of variability in DOC than the WAHD measure. We believe that
the WAHD model performance may have been hindered by a lack of neighboring
sites. We examined the spatial neighborhood for the SLD measure using a 7.02 km
range of spatial autocorrelation and found that the mean number of neighbors was
6.85. Every site had at least 1 neighbor and 89 sites had more than 9 neighbors.
However, the WAHD spatial neighborhood is restricted to flow-connected sites,
which dramatically reduced the number of neighboring sites. We did not impose
a range of spatial autocorrelation on the WAHD spatial neighborhood and instead
examined all flow-connected sites. The mean number of neighbors per site using
the WAHD was only 1.11. There were 170 sites that had no neighbors and only
87 sites had more than one neighbor. When a spatial neighborhood is deficient or
absent for a specific site, the geostatistical model is essentially non-spatial. It has the
ability to explain the broad-scale mean in the data, but does not provide additional
predictive ability at that site. This is a common feature for geostatistical models.
The associated standard error for prediction sites with many observed neighbors
is small compared to sites that have few or no neighbors. Thus, the WAHD model
had the ability to explain the broad-scale mean in the data, but did not provide
additional predictive ability at sites with few or no neighbors.

The cross-validation intervals for the SLD Mariah model regression coefficients
were all narrow, which indicated that the relationships between the covariates and
DOC were consistent throughout Maryland (Table IV). There were few extreme
regression coefficient values, but we examined the largest and smallest values and
determined that the majority were not produced by common sites and that the sites
were not clustered in space. This suggested that a local-scale factor, such as a point
source of organic waste, affected stream DOC and was not explained by our model.
The narrow cross-validation intervals for the regression coefficients and the lack of
extreme outliers indicated that the spatial location of the sites was not as important
as the watershed characteristics.

Spatial patterns were evident in the distribution of stream DOC concentrations
throughout Maryland (Figures 5 and 7). The majority of streams west of Chesapeake
Bay produced low DOC predictions with low prediction variances. However, there
was a small cluster of elevated DOC predictions in stream segments located within
Baltimore. The watershed conditions at these sites were not the source of elevated
DOC predictions. Instead, relatively large observed values at nearby sites, which
likely result from organic pollution discharged into Baltimore waterways, increased
the prediction values. Stream segments to the north and east of Chesapeake Bay
had larger DOC predictions and larger prediction variances. Some areas of coastal
Maryland are characterized by blackwater streams, which are naturally acidic and
have elevated levels of stream DOC (Boward et al., 1999). We believe that the
majority of the elevated stream predictions east of Chesapeake Bay are the result of
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natural environmental processes. It is not surprising that the variances associated
with these predictions were also large since there were only two observed sites clas-
sified as blackwater in the dataset. Consequently, the unique ecological conditions
that produce blackwater streams were not well represented in the observed dataset
and the model was unable to account for this natural variability.

Overall, the geostatistical model that we developed described more variability
in stream DOC than previous models based solely on coarse-scale landscape data
(Kortelainen, 1993; Canham, 2004). The model fit the data better in western and
central Maryland compared to the eastern coastal regions (Figure 5) for a number of
reasons. The regression equation was fit to the mean in the data and nearly all of the
observed sites had low DOC values. In addition, there appears to be less variation
in stream DOC in western and central Maryland and consequently neighboring
sites tend to be similar. The separation distances for survey sites are shorter to
the west of Chesapeake Bay compared to the east (Figure 2). Large separation
distances result in a weaker covariance between observed and predicted sites and
less confidence in the predictions. Given the statistical and spatial distribution of
the observed data, it is not surprising that the model was able to predict DOC values
more accurately in western and central Maryland. It may be necessary to develop
a separate geostatistical model, which is fit to data collected in the coastal region
to provide more accurate DOC predictions in eastern Maryland. Nonetheless, the
ecological processes that influence stream DOC to the west of Chesapeake Bay
appear to be similar and can be described using a single geostatistical model.

Although the geostatistical model fit the data well, it was developed to provide
a general estimate of stream DOC throughout Maryland and there are clearly in-
fluential factors that were not adequately represented. For instance, the model was
unable to account for abrupt differences in DOC values between neighboring sites
when the sites had similar watershed conditions. These differences may result from
local factors, such as point sources of organic inputs, which were not detected at our
scale of analysis. It is also possible that elevated DOC values result from non-point
sources of pollution and that our lumped watershed attributes were too general to
capture the information. For example, a wetland area 100 meters upstream should
have a larger impact on site DOC than a wetland five kilometers upstream. Lumped
watershed attributes are non-spatial and any differences that result from the spatial
location of the landuse within the watershed are not represented. In addition, it is
challenging to represent ecological processes, such as the flow path that water takes
from the terrestrial landscape to the stream, using coarse-scale lumped watershed
attributes.

We acknowledge that there is a tradeoff between building a cost-efficient re-
gional model and model accuracy. Our model was conservative, meaning that it
tended to under predict DOC values. Therefore, it may not be possible to use it
to identify point sources of organic pollution. However, we believe that it can
be used to provide an estimate of regional stream DOC values. The conserva-
tive nature of the model gives us confidence that a large predicted value with a low
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prediction variance actually represents an elevated stream DOC concentration on the
ground.

The Maryland DNR analyzed the MBSS data and generated a statistically valid
estimate of DOC levels in stream miles (Boward et al., 1999). However, their anal-
ysis did not indicate where stream segments with elevated DOC concentrations
were located. We successfully generated predictions for every stream segment in
the seven interbasins and evaluated the predictions using threshold values devel-
oped by the Maryland DNR (Figure 6). Although we chose to model DOC, which
is not currently regulated in Maryland, the same methodology could be applied to
regulated constituents, such as pH or nitrate (Peterson et al., in press). The Tech-
nical and Regulatory Services Administration within the Maryland Department of
the Environment is currently working on a project to modify the USGS National
Hydrography Dataset (NHD) (USGS, 2004) to include watershed impairments and
stream-use designations by NHD segment (F. Siano, personal communication). The
addition of these attributes can be used with the methodology that we presented and
will provide a straightforward means of categorizing stream segment predictions
into potentially impaired or unimpaired status. We believe that this methodology
adds value to probability-based inferences because every stream segment in a large
area is remotely surveyed in a cost-efficient manner to provide a regional estimate
of stream health.

5. Conclusions

The geostatistical models that we developed generated more accurate DOC predic-
tions than previous models, but did not appear to fit the data equally well throughout
the study area. This raises the question whether it is appropriate to use a single
geostatistical model to predict stream DOC throughout Maryland. Blackwater con-
ditions were under represented in the observed data and the accuracy of model
predictions might be improved if additional survey sites were located in these
ecosystems. On the other hand, ecological conditions in eastern and western Mary-
land are dissimilar and it may be impossible to use a single model to accurately
predict DOC. If the latter were true, it would be possible to develop more than one
model to obtain accurate predictions of DOC throughout Maryland.

We believe that our methodology has clear advantages related to regional water
quality monitoring of regulated water quality constituents, such as nitrate or pH,
and that it could be used by states, territories, and tribes to comply with the Clean
Water Act more easily. Existing data which has been collected using probability-
based random survey designs can be used to develop geostatistical models based
on SLD. Therefore, it is not necessary to collect additional field data to generate
the preliminary geostatistical model. In addition, inferences about regional stream
condition can be generated and this methodology can be used to locate potentially
impaired stream segments in a rapid and cost-efficient manner. Each stream segment
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receives a prediction value with a measure of uncertainty, which allows future field
efforts to be concentrated in areas with large amounts of uncertainty or a greater
potential for water quality impairment. This ensures that supplementary survey sites
are located in areas where additional information about water quality conditions
would be most valuable. In addition, resources can be conserved and made available
for the TMDL calculation for a specific segment. The model results can also be
displayed visually, which allows professionals to communicate results to a wide
variety of audiences.
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